中文
注册
我要评分
文档获取效率
文档正确性
内容完整性
文档易理解
在线提单
论坛求助

GBDT

GBDT分为ML Classification API和ML Regression API两大类模型接口。

模型接口类别

函数接口

ML Classification API

def fit(dataset: Dataset[_]): GBTClassificationModel

def fit(dataset: Dataset[_], paramMap: ParamMap): GBTClassificationModel

def fit(dataset: Dataset[_], paramMaps: Array[ParamMap]): Seq[GBTClassificationModel]

def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): GBTClassificationModel

ML Regression API

def fit(dataset: Dataset[_]): GBTRegressionModel

def fit(dataset: Dataset[_], paramMap: ParamMap): GBTRegressionModel

def fit(dataset: Dataset[_], paramMaps: Array[ParamMap]): Seq[GBTRegressionModel]

def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): GBTRegressionModel

ML Classification API

  • 功能描述

    传入Dataset格式的样本数据,调用训练接口,输出GBDT分类模型。

  • 输入输出
    1. 包名package org.apache.spark.ml.classification
    2. 类名:GBTClassifier
    3. 方法名:fit
    4. 输入:Dataset[_],训练样本数据,必须字段如下。

      Param name

      Type(s)

      Default

      Description

      labelCol

      Double

      label

      预测标签

      featuresCol

      Vector

      features

      特征标签

    5. 输入:paramMap、paramMaps、firstParamPair、otherParamPairs,fit接口的模型参数,说明如下。

      Param name

      Type(s)

      Example

      Description

      paramMap

      ParamMap

      ParamMap(A.c -> b)

      将b的值赋给模型A的参数c

      paramMaps

      Array[ParamMap]

      Array[ParamMap](n)

      形成n个ParamMap模型参数列表

      firstParamPair

      ParamPair

      ParamPair(A.c, b)

      将b的值赋给模型A的参数c

      otherParamPairs

      ParamPair

      ParamPair(A.e, f)

      将f的值赋给模型A的参数e

    6. 算法参数

      算法参数

      def setCheckpointInterval(value: Int): GBTClassifier.this.type

      def setFeatureSubsetStrategy(value: String): GBTClassifier.this.type

      def setFeaturesCol(value: String): GBTClassifier

      def setImpurity(value: String): GBTClassifier.this.type

      def setLabelCol(value: String): GBTClassifier

      def setLossType(value: String): GBTClassifier.this.type

      def setMaxBins(value: Int): GBTClassifier.this.type

      def setMaxDepth(value: Int): GBTClassifier.this.type

      def setMaxIter(value: Int): GBTClassifier.this.type

      def setMinInfoGain(value: Double): GBTClassifier.this.type

      def setMinInstancesPerNode(value: Int): GBTClassifier.this.type

      def setPredictionCol(value: String): GBTClassifier

      def setProbabilityCol(value: String): GBTClassifierdoUseAcc

      def setRawPredictionCol(value: String): GBTClassifier

      def setSeed(value: Long): GBTClassifier.this.type

      def setStepSize(value: Double): GBTClassifier.this.type

      def setSubsamplingRate(value: Double): GBTClassifier.this.type

      def setThresholds(value: Array[Double]): GBTClassifier

    7. 新增算法参数。

      参数名称

      参数含义

      取值类型

      doUseAcc

      特征并行训练模式开关

      True/False[Boolean]

      参数及fit代码接口示例:

       1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      import org.apache.spark.ml.param.{ParamMap, ParamPair}
      
      val gbdt = new GBTClassifier()
      //定义def fit(dataset: Dataset[_], paramMap: ParamMap) 接口参数
      val paramMap = ParamMap(gbdt.maxDepth -> maxDepth)
      .put(gbdt.maxIter, maxIter)
      
      // 定义def fit(dataset: Dataset[_], paramMaps: Array[ParamMap]): 接口参数
      val paramMaps: Array[ParamMap] = new Array[ParamMap](2)
      for (i <- 0 to  2) {
      paramMaps(i) = ParamMap(gbdt.maxDepth -> maxDepth)
      .put(gbdt.maxIter, maxIter)
      }//对paramMaps进行赋值
      
      // 定义def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*) 接口参数
      val maxDepthParamPair = ParamPair(gbdt.maxDepth, maxDepth)
      val maxIterParamPair = ParamPair(gbdt.maxIter, maxIter)
      val maxBinsParamPair = ParamPair(gbdt.maxBins, maxBins)
      
      // 调用各个fit接口
      model = gbdt.fit(trainingData)
      model = gbdt.fit(trainingData, paramMap)
      models = gbdt.fit(trainingData, paramMaps)
      model = gbdt.fit(trainingData, maxDepthParamPair, maxIterParamPair, maxBinsParamPair)
      
    8. 输出:GBTClassificationModel,GBDT分类模型,模型预测时的输出字段。

      Param name

      Type(s)

      Default

      Description

      predictionCol

      Double

      prediction

      Predicted label

  • 使用样例
    fit(dataset: Dataset[_]): GBTClassificationModel样例:
     1
     2
     3
     4
     5
     6
     7
     8
     9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    import org.apache.spark.ml.Pipeline
    import org.apache.spark.ml.classification.{GBTClassificationModel, GBTClassifier}
    import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
    import org.apache.spark.ml.feature.{IndexToString, StringIndexer, VectorIndexer}
    
    // Load and parse the data file, converting it to a DataFrame.
    val data = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt")
    
    // Index labels, adding metadata to the label column.
    // Fit on whole dataset to include all labels in index.
    val labelIndexer = new StringIndexer()
    .setInputCol("label")
    .setOutputCol("indexedLabel")
    .fit(data)
    // Automatically identify categorical features, and index them.
    // Set maxCategories so features with > 4 distinct values are treated as continuous.
    val featureIndexer = new VectorIndexer()
    .setInputCol("features")
    .setOutputCol("indexedFeatures")
    .setMaxCategories(4)
    .fit(data)
    
    // Split the data into training and test sets (30% held out for testing).
    val Array(trainingData, testData) = data.randomSplit(Array(0.7, 0.3))
    
    // Train a GBT model.
    val gbt = new GBTClassifier()
    .setLabelCol("indexedLabel")
    .setFeaturesCol("indexedFeatures")
    .setMaxIter(10)
    
    // Convert indexed labels back to original labels.
    val labelConverter = new IndexToString()
    .setInputCol("prediction")
    .setOutputCol("predictedLabel")
    .setLabels(labelIndexer.labels)
    
    // Chain indexers and GBT in a Pipeline.
    val pipeline = new Pipeline()
    .setStages(Array(labelIndexer, featureIndexer, gbt, labelConverter))
    
    // Train model. This also runs the indexers.
    val model = pipeline.fit(trainingData)
    
    // Make predictions.
    val predictions = model.transform(testData)
    
    // Select (prediction, true label) and compute test error.
    val evaluator = new MulticlassClassificationEvaluator()
    .setLabelCol("indexedLabel")
    .setPredictionCol("prediction")
    .setMetricName("accuracy")
    val accuracy = evaluator.evaluate(predictions)
    println("Test Error = " + (1.0 - accuracy))
    
    val gbtModel = model.stages(2).asInstanceOf[GBTClassificationModel]
    println("Learned classification GBT model:\n" + gbtModel.toDebugString)
    
  • 结果样例
      1
      2
      3
      4
      5
      6
      7
      8
      9
     10
     11
     12
     13
     14
     15
     16
     17
     18
     19
     20
     21
     22
     23
     24
     25
     26
     27
     28
     29
     30
     31
     32
     33
     34
     35
     36
     37
     38
     39
     40
     41
     42
     43
     44
     45
     46
     47
     48
     49
     50
     51
     52
     53
     54
     55
     56
     57
     58
     59
     60
     61
     62
     63
     64
     65
     66
     67
     68
     69
     70
     71
     72
     73
     74
     75
     76
     77
     78
     79
     80
     81
     82
     83
     84
     85
     86
     87
     88
     89
     90
     91
     92
     93
     94
     95
     96
     97
     98
     99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    110
    111
    112
    113
    114
    115
    116
    117
    118
    119
    120
    121
    122
    123
    124
    125
    126
    127
    128
    129
    130
    131
    132
    133
    134
    135
    136
    137
    138
    139
    140
    141
    142
    143
    144
    145
    146
    147
    148
    149
    150
    151
    152
    153
    154
    155
    156
    157
    158
    Test Error = 0.0714285714285714
    Learned classification GBT model:
    GBTClassificationModel (uid=gbtc_72086dba9af5) with 10 trees
    Tree 0 (weight 1.0):
    If (feature 406 <= 9.5)
    Predict: 1.0
    Else (feature 406 > 9.5)
    Predict: -1.0
    Tree 1 (weight 0.1):
    If (feature 406 <= 9.5)
    If (feature 209 <= 241.5)
    If (feature 154 <= 55.0)
    Predict: 0.4768116880884702
    Else (feature 154 > 55.0)
    Predict: 0.4768116880884703
    Else (feature 209 > 241.5)
    Predict: 0.47681168808847035
    Else (feature 406 > 9.5)
    If (feature 461 <= 143.5)
    Predict: -0.47681168808847024
    Else (feature 461 > 143.5)
    Predict: -0.47681168808847035
    Tree 2 (weight 0.1):
    If (feature 406 <= 9.5)
    If (feature 657 <= 116.5)
    If (feature 154 <= 9.5)
    Predict: 0.4381935810427206
    Else (feature 154 > 9.5)
    Predict: 0.43819358104272066
    Else (feature 657 > 116.5)
    Predict: 0.43819358104272066
    Else (feature 406 > 9.5)
    If (feature 322 <= 16.0)
    Predict: -0.4381935810427206
    Else (feature 322 > 16.0)
    Predict: -0.4381935810427206
    Tree 3 (weight 0.1):
    If (feature 406 <= 9.5)
    If (feature 598 <= 166.5)
    If (feature 180 <= 3.0)
    Predict: 0.4051496802845983
    Else (feature 180 > 3.0)
    Predict: 0.4051496802845984
    Else (feature 598 > 166.5)
    Predict: 0.4051496802845983
    Else (feature 406 > 9.5)
    Predict: -0.4051496802845983
    Tree 4 (weight 0.1):
    If (feature 406 <= 9.5)
    If (feature 537 <= 47.5)
    If (feature 606 <= 7.0)
    Predict: 0.3765841318352991
    Else (feature 606 > 7.0)
    Predict: 0.37658413183529926
    Else (feature 537 > 47.5)
    Predict: 0.3765841318352994
    Else (feature 406 > 9.5)
    If (feature 124 <= 35.5)
    If (feature 376 <= 1.0)
    If (feature 516 <= 26.5)
    If (feature 266 <= 50.5)
    Predict: -0.3765841318352991
    Else (feature 266 > 50.5)
    Predict: -0.37658413183529915
    Else (feature 516 > 26.5)
    Predict: -0.3765841318352992
    Else (feature 376 > 1.0)
    Predict: -0.3765841318352994
    Else (feature 124 > 35.5)
    Predict: -0.3765841318352994
    Tree 5 (weight 0.1):
    If (feature 406 <= 9.5)
    If (feature 570 <= 3.5)
    Predict: 0.35166478958101005
    Else (feature 570 > 3.5)
    Predict: 0.35166478958101
    Else (feature 406 > 9.5)
    If (feature 266 <= 14.0)
    If (feature 267 <= 12.5)
    Predict: -0.35166478958101005
    Else (feature 267 > 12.5)
    If (feature 267 <= 36.0)
    Predict: -0.35166478958101005
    Else (feature 267 > 36.0)
    Predict: -0.3516647895810101
    Else (feature 266 > 14.0)
    Predict: -0.35166478958101005
    Tree 6 (weight 0.1):
    If (feature 406 <= 9.5)
    If (feature 207 <= 7.5)
    Predict: 0.32974984655529926
    Else (feature 207 > 7.5)
    Predict: 0.3297498465552993
    Else (feature 406 > 9.5)
    If (feature 490 <= 185.0)
    Predict: -0.32974984655529926
    Else (feature 490 > 185.0)
    Predict: -0.3297498465552993
    Tree 7 (weight 0.1):
    If (feature 406 <= 9.5)
    If (feature 568 <= 22.0)
    Predict: 0.3103372455197956
    Else (feature 568 > 22.0)
    Predict: 0.31033724551979563
    Else (feature 406 > 9.5)
    If (feature 379 <= 133.5)
    If (feature 237 <= 250.5)
    Predict: -0.3103372455197956
    Else (feature 237 > 250.5)
    Predict: -0.3103372455197957
    Else (feature 379 > 133.5)
    If (feature 433 <= 183.5)
    If (feature 516 <= 9.0)
    Predict: -0.3103372455197956
    Else (feature 516 > 9.0)
    Predict: -0.3103372455197957
    Else (feature 433 > 183.5)
    Predict: -0.3103372455197957
    Tree 8 (weight 0.1):
    If (feature 406 <= 9.5)
    If (feature 184 <= 19.0)
    Predict: 0.2930291649125433
    Else (feature 184 > 19.0)
    If (feature 155 <= 147.0)
    If (feature 180 <= 3.0)
    Predict: 0.2930291649125433
    Else (feature 180 > 3.0)
    Predict: 0.2930291649125433
    Else (feature 155 > 147.0)
    Predict: 0.2930291649125434
    Else (feature 406 > 9.5)
    If (feature 379 <= 133.5)
    Predict: -0.2930291649125433
    Else (feature 379 > 133.5)
    If (feature 433 <= 52.5)
    Predict: -0.2930291649125433
    Else (feature 433 > 52.5)
    If (feature 462 <= 143.5)
    Predict: -0.2930291649125433
    Else (feature 462 > 143.5)
    Predict: -0.2930291649125434
    Tree 9 (weight 0.1):
    If (feature 406 <= 9.5)
    If (feature 183 <= 3.0)
    Predict: 0.27750666438358246
    Else (feature 183 > 3.0)
    If (feature 183 <= 19.5)
    Predict: 0.27750666438358246
    Else (feature 183 > 19.5)
    Predict: 0.2775066643835825
    Else (feature 406 > 9.5)
    If (feature 239 <= 50.5)
    If (feature 435 <= 102.0)
    Predict: -0.27750666438358246
    Else (feature 435 > 102.0)
    Predict: -0.2775066643835825
    Else (feature 239 > 50.5)
    Predict: -0.27750666438358257
    

ML Regression API

  • 功能描述

    传入Dataset格式的样本数据,调用训练接口,输出GBDT回归模型。

  • 输入输出
    1. 包名package org.apache.spark.ml.classification
    2. 类名:GBTRegressor
    3. 方法名:fit
    4. 输入:Dataset[_],训练样本数据,必须字段如下。

      Param name

      Type(s)

      Default

      Description

      labelCol

      Double

      label

      预测标签

      featuresCol

      Vector

      features

      特征标签

    5. 输入:paramMap、paramMaps、firstParamPair、otherParamPairs,fit接口的模型参数,说明如下。

      Param name

      Type(s)

      Example

      Description

      paramMap

      ParamMap

      ParamMap(A.c -> b)

      将b的值赋给模型A的参数c

      paramMaps

      Array[ParamMap]

      Array[ParamMap](n)

      形成n个ParamMap模型参数列表

      firstParamPair

      ParamPair

      ParamPair(A.c, b)

      将b的值赋给模型A的参数c

      otherParamPairs

      ParamPair

      ParamPair(A.e, f)

      将f的值赋给模型A的参数e

    6. 算法参数

      算法参数

      def setCheckpointInterval(value: Int): GBTRegressor.this.type

      def setFeatureSubsetStrategy(value: String): GBTRegressor.this.type

      def setFeaturesCol(value: String): GBTRegressor

      def setImpurity(value: String): GBTRegressor.this.type

      def setLabelCol(value: String): GBTRegressor

      def setLossType(value: String): GBTRegressor.this.type

      def setMaxBins(value: Int): GBTRegressor.this.type

      def setMaxDepth(value: Int): GBTRegressor.this.type

      def setMaxIter(value: Int): GBTRegressor.this.type

      def setMinInfoGain(value: Double): GBTRegressor.this.type

      def setMinInstancesPerNode(value: Int): GBTRegressor.this.type

      def setPredictionCol(value: String): GBTRegressor

      def setSeed(value: Long): GBTRegressor.this.type

      def setStepSize(value: Double): GBTRegressor.this.type

      def setSubsamplingRate(value: Double): GBTRegressor.this.type

      参数及fit代码接口示例:

       1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      import org.apache.spark.ml.param.{ParamMap, ParamPair}
      
      val gbdt = new GBTRegressor() //定义回归模型
      
      //定义def fit(dataset: Dataset[_], paramMap: ParamMap) 接口参数
      val paramMap = ParamMap(gbdt.maxDepth -> maxDepth)
      .put(gbdt.maxIter, maxIter)
      
      // 定义def fit(dataset: Dataset[_], paramMaps: Array[ParamMap]): 接口参数
      val paramMaps: Array[ParamMap] = new Array[ParamMap](2)
      for (i <- 0 to  2) {
      paramMaps(i) = ParamMap(gbdt.maxDepth -> maxDepth)
      .put(gbdt.maxIter, maxIter)
      } //对paramMaps进行赋值
      
      // 定义def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*) 接口参数
      val maxDepthParamPair = ParamPair(gbdt.maxDepth, maxDepth)
      val maxIterParamPair = ParamPair(gbdt.maxIter, maxIter)
      val maxBinsParamPair = ParamPair(gbdt.maxBins, maxBins)
      
      // 调用各个fit接口
      model = gbdt.fit(trainingData)  //返回GBTRegressionModel
      model = gbdt.fit(trainingData, paramMap)  //返回GBTRegressionModel
      models = gbdt.fit(trainingData, paramMaps)  //返回Seq[GBTRegressionModel]
      model = gbdt.fit(trainingData, maxDepthParamPair, maxIterParamPair, maxBinsParamPair) //返回GBTRegressionModel
      
    7. 输出:GBTRegressionModel或Seq[GBTRegressionModel],GBDT回归模型,模型预测时的输出字段如下。

      Param name

      Type(s)

      Default

      Description

      predictionCol

      Double

      prediction

      Predicted label

  • 使用样例
    fit(dataset: Dataset[_]): GBTRegressionModel样例:
     1
     2
     3
     4
     5
     6
     7
     8
     9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    import org.apache.spark.ml.Pipeline
    import org.apache.spark.ml.evaluation.RegressionEvaluator
    import org.apache.spark.ml.feature.VectorIndexer
    import org.apache.spark.ml.regression.{GBTRegressionModel, GBTRegressor}
    
    // Load and parse the data file, converting it to a DataFrame.
    val data = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt")
    
    // Automatically identify categorical features, and index them.
    // Set maxCategories so features with > 4 distinct values are treated as continuous.
    val featureIndexer = new VectorIndexer()
    .setInputCol("features")
    .setOutputCol("indexedFeatures")
    .setMaxCategories(4)
    .fit(data)
    
    // Split the data into training and test sets (30% held out for testing).
    val Array(trainingData, testData) = data.randomSplit(Array(0.7, 0.3))
    
    // Train a GBT model.
    val gbt = new GBTRegressor()
    .setLabelCol("label")
    .setFeaturesCol("indexedFeatures")
    .setMaxIter(10)
    
    // Chain indexer and GBT in a Pipeline.
    val pipeline = new Pipeline()
    .setStages(Array(featureIndexer, gbt))
    
    // Train model. This also runs the indexer.
    val model = pipeline.fit(trainingData)
    
    // Make predictions.
    val predictions = model.transform(testData)
    
    // Select example rows to display.
    predictions.select("prediction", "label", "features").show(5)
    
    // Select (prediction, true label) and compute test error.
    val evaluator = new RegressionEvaluator()
    .setLabelCol("label")
    .setPredictionCol("prediction")
    .setMetricName("rmse")
    val rmse = evaluator.evaluate(predictions)
    println("Root Mean Squared Error (RMSE) on test data = " + rmse)
    
    val gbtModel = model.stages(1).asInstanceOf[GBTRegressionModel]
    println("Learned regression GBT model:\n" + gbtModel.toDebugString)
    
  • 结果样例
     1
     2
     3
     4
     5
     6
     7
     8
     9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    Root Mean Squared Error (RMSE) on test data = 0.0
    Learned regression GBT model:
    GBTRegressionModel (uid=gbtr_842c8acff963) with 10 trees
    Tree 0 (weight 1.0):
    If (feature 434 <= 70.5)
    If (feature 99 in {0.0,3.0})
    Predict: 0.0
    Else (feature 99 not in {0.0,3.0})
    Predict: 1.0
    Else (feature 434 > 70.5)
    Predict: 1.0
    Tree 1 (weight 0.1):
    Predict: 0.0
    Tree 2 (weight 0.1):
    Predict: 0.0
    Tree 3 (weight 0.1):
    Predict: 0.0
    Tree 4 (weight 0.1):
    Predict: 0.0
    Tree 5 (weight 0.1):
    Predict: 0.0
    Tree 6 (weight 0.1):
    Predict: 0.0
    Tree 7 (weight 0.1):
    Predict: 0.0
    Tree 8 (weight 0.1):
    Predict: 0.0
    Tree 9 (weight 0.1):
    Predict: 0.0
    

接口适用性说明:

  • 本算法接口适用于基于鲲鹏服务器的HDP大数据平台,其中Java开发环境要求1.8及以上版本,Spark开发环境要求2.3.2版本,最低的HDP版本是3.1.0。
  • 本算法运行在HDP大数据平台需部署的组件需要包括:HDFS、Spark2、Yarn、ZooKeeper、Hive、MapReduce2。