LinearRegression
LinearRegression为ML API。
模型接口类别 |
函数接口 |
---|---|
ML API |
def fit(dataset: Dataset[_]):LinearRegressionModel |
def fit(dataset: Dataset[_], paramMap: ParamMap): LinearRegressionModel |
|
def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*):LinearRegressionModel |
|
def fit(dataset: Dataset[_], paramMaps: Array[ParamMap]): Seq[LinearRegressionModel] |
ML API
- 功能描述
- 输入输出
- 包名:package org.apache.spark.ml.regression
- 类名:LinearRegression
- 方法名:fit
- 输入:Dataset[_],训练样本数据,必须字段如下。
Param name
Type(s)
Default
Description
labelCol
Double
"label"
Label
featuresCol
Vector
"features"
特征标签
- 算法参数
算法参数
def setRegParam(value: Double): LinearRegression.this.type
def setFitIntercept(value: Boolean): LinearRegression.this.type
def setStandardization(value: Boolean): LinearRegression.this.type
def setElasticNetParam(value: Double): LinearRegression.this.type
def setMaxIter(value: Int): LinearRegression.this.type
def setTol(value: Double): LinearRegression.this.type
def setWeightCol(value: String): LinearRegression.this.type
def setSolver(value: String): LinearRegression.this.type
def setAggregationDepth(value: Int): LinearRegression.this.type
def setLoss(value: String): LinearRegression.this.type
def setEpsilon(value: Double): LinearRegression.this.type
参数及fit代码接口示例:
import org.apache.spark.ml.param.{ParamMap, ParamPair} val linR = new LinearRegression() //定义def fit(dataset: Dataset[_], paramMap: ParamMap) 接口参数 val paramMap = ParamMap(linR.maxIter -> maxIter) .put(linR.regParam, regParam) // 定义def fit(dataset: Dataset[_], paramMaps: Array[ParamMap]): 接口参数 val paramMaps: Array[ParamMap] = new Array[ParamMap](2) for (i <- 0 to 2) { paramMaps(i) = ParamMap(linR.maxIter -> maxIter) .put(linR.regParam, regParam) }//对paramMaps进行赋值 // 定义def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*) 接口参数 val regParamPair = ParamPair(linR.regParam, regParam) val maxIterParamPair = ParamPair(linR.maxIter, maxIter) val tolParamPair = ParamPair(linR.tol, tol) // 调用各个fit接口 model = linR.fit(trainingData) model = linR.fit(trainingData, paramMap) models = linR.fit(trainingData, paramMaps) model = linR.fit(trainingData, regParamPair, maxIterParamPair, tolParamPair)
- 输出:LinearRegressionModel,模型预测时的输出字段如下。
Param name
Type(s)
Default
Description
predictionCol
Int
"prediction"
predictionCol
- 使用样例
import org.apache.spark.ml.regression.LinearRegression // Load training data val training = spark.read.format("libsvm") .load("data/mllib/sample_linear_regression_data.txt") val lr = new LinearRegression() .setMaxIter(10) .setRegParam(0.3) .setElasticNetParam(0.8) // Fit the model val lrModel = lr.fit(training) // Summarize the model over the training set and print out some metrics val trainingSummary = lrModel.summary