Kmeans
Kmeans为ML API。
模型接口类别 |
函数接口 |
---|---|
ML API |
def fit(dataset: Dataset[_]): KMeansModel |
def fit(dataset: Dataset[_], paramMaps: Array[ParamMap]): Seq[KMeansModel] |
|
def fit(dataset: Dataset[_], paramMap: ParamMap): KMeansModel |
|
def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): KMeansModel |
ML API
- 功能描述
- 输入输出
- 包名:package org.apache.spark.ml.clustering
- 类名:KMeans
- 方法名:fit
- 输入:Dataset[_],训练样本数据,必须字段如下。
Param name
Type(s)
Default
Description
featuresCol
Vector
"features"
特征标签
- 算法参数
算法参数
def setFeaturesCol(value: String): KMeans.this.type
def setPredictionCol(value: String): KMeans.this.type
def setK(value: Int): KMeans.this.type
def setInitMode(value: String): KMeans.this.type
def setInitSteps(value: Int): KMeans.this.type
def setMaxIter(value: Int): KMeans.this.type
def setThreshold(value: Double): KMeans.this.type
def setTol(value: Double): KMeans.this.type
def setSeed(value: Long): KMeans.this.type
- 新增算法参数。
参数名称
参数含义
取值类型
sampleRate
每一轮迭代使用的数据占全量数据集的比例
0~1[Double]
optMethod
样本数据采样触发开关
default/allData[String]
参数及fit代码接口示例:
import org.apache.spark.ml.param.{ParamMap, ParamPair} val kmeans = new MlKMeans() //定义def fit(dataset: Dataset[_], paramMap: ParamMap) 接口参数 val paramMap = ParamMap(kmeans.initSteps -> initSteps) .put(kmeans.maxIter, maxIter) // 定义def fit(dataset: Dataset[_], paramMaps: Array[ParamMap]): 接口参数 val paramMaps: Array[ParamMap] = new Array[ParamMap](2) for (i <- 0 to 2) { paramMaps(i) = ParamMap(kmeans.initSteps -> initSteps) .put(kmeans.maxIter, maxIter) }//对paramMaps进行赋值 // 定义def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*) 接口参数 val initStepsParamPair = ParamPair(kmeans.initSteps, initSteps) val maxIterParamPair = ParamPair(kmeans.maxIter, maxIter) val tolParamPair = ParamPair(kmeans.tol, tol) // 调用各个fit接口 model = kmeans.fit(trainingData) model = kmeans.fit(trainingData, paramMap) models = kemans.fit(trainingData, paramMaps) model = kemans.fit(trainingData, initStepsParamPair, maxIterParamPair, tolParamPair)
- 输出:KMeansModel、KMeans聚类模型,模型预测时的输出字段如下。
Param name
Type(s)
Default
Description
predictionCol
Int
"prediction"
predictionCol
- 使用样例
import org.apache.spark.ml.clustering.KMeans import org.apache.spark.ml.evaluation.ClusteringEvaluator // Loads data. val dataset = spark.read.format("libsvm").load("data/mllib/sample_kmeans_data.txt") // Trains a k-means model. val kmeans = new KMeans().setK(2).setSeed(1L) val model = kmeans.fit(dataset) // Make predictions val predictions = model.transform(dataset) // Evaluate clustering by computing Silhouette score val evaluator = new ClusteringEvaluator() val silhouette = evaluator.evaluate(predictions) println(s"Silhouette with squared euclidean distance = $silhouette") // Shows the result. println("Cluster Centers: ") model.clusterCenters.foreach(println)