计算矩阵的QR分解,即。
C Interface:
void dgeqrf_(const int *m, const int *n, double *a, const int *lda, double *tau, double *work, const int *lwork, int *info);
void sgeqrf_(const int *m, const int *n, float *a, const int *lda, float *tau, float *work, const int *lwork, int *info);
void cgeqrf_(const int *m, const int *n, float _Complex *a, const int *lda, float _Complex *tau, float _Complex *work, const int *lwork, int *info);
void zgeqrf_(const int *m, const int *n, double _Complex *a, const int *lda, double _Complex *tau, double _Complex *work, const int *lwork, int *info);
Fortran Interface:
DGEQRF(m, n, a, lda, tau, work, lwork, info);
SGEQRF(m, n, a, lda, tau, work, lwork, info);
CGEQRF(m, n, a, lda, tau, work, lwork, info);
ZGEQRF(m, n, a, lda, tau, work, lwork, info);
参数名 |
类型 |
描述 |
输入/输出 |
---|---|---|---|
m |
整型数 |
矩阵A的行数。 |
输入 |
n |
整型数 |
矩阵A的列数。 |
输入 |
a |
|
|
输入/输出 |
lda |
整型数 |
A的leading dimension大小,要求lda>=max(1, m)。 |
输出 |
tau |
|
初等反射的系数,长度为min(m,n)(参见说明)。 |
输出 |
work |
|
临时存储空间,使用lwork=-1调用后work[0]为最优的lwork值。 |
输出 |
lwork |
整数型 |
work数组的长度。 lwork=-1时查询最优work大小,结果保存在work[0]中,否则要求lwork>=n。 |
输入 |
info |
整数型 |
执行结果:
|
输出 |
分解结果矩阵Q通过一系列初等反射乘积表示:Q=H(1)*H(2)*...*H(k), k=min(m,n)。H(i)=I-tau*v*v'。tau为标量,v为向量且前i-1个元素为0,第i个元素为1,剩余元素保存在a的第i列中(a的下三角部分)。
#include "klapack.h"
C Interface:
int m = 6; int n = 4; int lda = 6; int info = 0; double tau[4]; double *work = NULL; double qwork; int lwork = -1; /* * A (6x4, stored in column-major): * 2.229 1.273 0.087 0.035 * 8.667 4.317 4.091 3.609 * 0.205 7.810 2.553 6.507 * 2.758 2.911 8.791 5.051 * 8.103 1.396 1.317 4.738 * 8.859 3.161 0.808 5.972 */ double a[] = {2.229, 8.667, 0.205, 2.758, 8.103, 8.859, 1.273, 4.317, 7.810, 2.911, 1.396, 3.161, 0.087, 4.091, 2.553, 8.791, 1.317, 0.808, 0.035, 3.609, 6.507, 5.051, 4.738, 5.972}; /* Query optimal work size */ dgeqrf_(&m, &n, a, &lda, tau, &qwork, &lwork, &info); if (info != 0) { return ERROR; } lwork = (int)qwork; work = (double *)malloc(sizeof(double) * lwork); /* Calculate QR */ dgeqrf_(&m, &n, a, &lda, tau, work, &lwork, &info); free(work); /* * Output: * tau * 1.1464 1.0946 1.3670 1.7415 * A output (stored in column-major) * -15.2274 -5.8577 -5.1387 -9.0573 * 0.4965 -8.2070 -4.5806 -6.5291 * 0.0117 0.8600 7.4527 1.3953 * 0.1580 0.1986 -0.6634 -3.5188 * 0.4642 -0.2130 -0.0183 0.2805 * 0.5075 -0.0510 0.1506 0.2642 */
Fortran Interface:
PARAMETER (m = 6) PARAMETER (n = 4) PARAMETER (lda = 6) INTEGER :: info = 0 REAL(8) :: tau(4) REAL(8) :: qwork(1) INTEGER :: lwork = -1 REAL(8), ALLOCATABLE :: work(:) * * A (6x4, stored in column-major): * 2.229 1.273 0.087 0.035 * 8.667 4.317 4.091 3.609 * 0.205 7.810 2.553 6.507 * 2.758 2.911 8.791 5.051 * 8.103 1.396 1.317 4.738 * 8.859 3.161 0.808 5.972 * REAL(8) :: a(m, n) DATA a / 2.229, 8.667, 0.205, 2.758, 8.103, 8.859, $ 1.273, 4.317, 7.810, 2.911, 1.396, 3.161, $ 0.087, 4.091, 2.553, 8.791, 1.317, 0.808, $ 0.035, 3.609, 6.507, 5.051, 4.738, 5.972 / EXTERNAL DGEQRF * Query optimal work size CALL DGEQRF(m, n, a, lda, tau, qwork, lwork, info) IF (info.NE.0) THEN CALL EXIT(1) END IF lwork = INT(qwork(1)) ALLOCATE(work(lwork)) * Calculate QR CALL DGEQRF(m, n, a, lda, tau, work, lwork, info) DEALLOCATE(work) * Output: * tau * 1.1464 1.0946 1.3670 1.7415 * A output (stored in column-major) * -15.2274 -5.8577 -5.1387 -9.0573 * 0.4965 -8.2070 -4.5806 -6.5291 * 0.0117 0.8600 7.4527 1.3953 * 0.1580 0.1986 -0.6634 -3.5188 * 0.4642 -0.2130 -0.0183 0.2805 * 0.5075 -0.0510 0.1506 0.2642